The impact of water management practices on subtropical pasture methane emissions and ecosystem service payments.

نویسندگان

  • Samuel D Chamberlain
  • Peter M Groffman
  • Elizabeth H Boughton
  • Nuria Gomez-Casanovas
  • Evan H DeLucia
  • Carl J Bernacchi
  • Jed P Sparks
چکیده

Pastures are an extensive land cover type; however, patterns in pasture greenhouse gas (GHG) exchange vary widely depending on climate and land management. Understanding this variation is important, as pastures may be a net GHG source or sink depending on these factors. We quantified carbon dioxide (CO2 ) and methane (CH4 ) fluxes from subtropical pastures in south Florida for three wet-dry seasonal cycles using eddy covariance, and estimated two annual budgets of CO2 , CH4 , and GHG equivalent emissions. We also estimated the impact of water retention practices on pasture GHG emissions and assessed the impact of these emissions on stakeholder payments for water retention services in a carbon market framework. The pastures were net CO2 sinks sequestering up to 163 ± 54 g CO2 -C·m-2 ·yr-1 (mean ± 95% CI), but were also strong CH4 sources emitting up to 23.5 ± 2.1 g CH4 -C·m-2 ·yr-1 . Accounting for the increased global warming potential of CH4 , the pastures were strong net GHG sources emitting up to 584 ± 78 g CO2 -C eq.·m-2 ·yr-1 , and all CO2 uptake was offset by wet season CH4 emissions from the flooded landscape. Our analysis suggests that CH4 emissions due to increased flooding from water management practices is a small component of the pasture GHG budget, and water retention likely contributes 2-11% of net pasture GHG emissions. These emissions could reduce water retention payments by up to ~12% if stakeholders were required to pay for current GHG emissions in a carbon market. It would require at least 93.7 kg CH4 -C emissions per acre-foot water storage (1 acre-foot = 1233.48 m3 ) for carbon market costs to exceed water retention payments, and this scenario is highly unlikely as we estimate current practices are responsible for 11.3 ± 7.2 kg CH4 -C emissions per acre-foot of water storage. Our results demonstrate that water retention practices aimed at reducing nutrient loading to the Everglades are likely only responsible for a minor increase in pasture GHG emissions and would have a small economic consequence in a carbon market.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Turnover of organic carbon and nitrogen in soil assessed from δ13C and δ15N changes under pasture and cropping practices and estimates of greenhouse gas emissions.

The continuing clearance of native vegetation for pasture, and especially cropping, is a concern due to declines in soil organic C (SOC) and N, deteriorating soil health, and adverse environment impact such as increased emissions of major greenhouse gases (CO2, N2O and CH4). There is a need to quantify the rates of SOC and N budget changes, and the impact on greenhouse gas emissions from land u...

متن کامل

Effects of the land use change on ecosystem service value

The impacts of land utilization change on the ecosystem service values in Daqing during 1995 to 2015 were analyzed based on unit area ecosystem service value of Chinese territorial ecosystem from Mr. Xie Gaodi and ecosystem service value calculation formula from Costanza. Results showed that the ecosystem service value of Daqing decreased from US $4343.1559m in 1995 to US $3824.327m in 2015, wi...

متن کامل

The Impact of Knowledge Management Strategy on Service Innovation Performance in Private and Public Hospitals

The main objective of this research is to investigate the comparative effect of knowledge management strategy on the service innovation performance in public and private hospitals through the mediating role of knowledge management practices. Drawing in knowledge management theory, all the organizations require a suitable knowledge management strategy to perform successfully. Therefore, this res...

متن کامل

Climate change mitigation for agriculture: water quality benefits and costs.

New Zealand is unique in that half of its national greenhouse gas (GHG) inventory derives from agriculture--predominantly as methane (CH4) and nitrous oxide (N2O), in a 2:1 ratio. The remaining GHG emissions predominantly comprise carbon dioxide (CO2) deriving from energy and industry sources. Proposed strategies to mitigate emissions of CH4 and N2O from pastoral agriculture in New Zealand are:...

متن کامل

Carbon flux assessment in cow-calf grazing systems.

Greenhouse gas (GHG) fluxes and soil organic carbon (SOC) accumulation in grassland ecosystems are intimately linked to grazing management. This study assessed the carbon equivalent flux (Ceq) from 1) an irrigated, heavily stocked, low-density grazing system, 2) a nonirrigated, lightly stocked, high-density grazing system, and 3) a grazing-exclusion pasture site on the basis of the GHG emission...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ecological applications : a publication of the Ecological Society of America

دوره 27 4  شماره 

صفحات  -

تاریخ انتشار 2017